Back to Diary

정수론 Chapter 9.1 - The order of an Integer and Primitive Roots

이 글의 내용은 성균관대학교 권순학 교수님의 2019년 5월 2일, 5월 7일 수업 내용을 재구성한 것입니다.

Definition: multiplicative order of \(a ; (\textrm{mod} ; m) \)

\(a^x \equiv 1 ; (\textrm{mod} ; m) \)을 만족하는 최소의 양수 \(x\)를 multiplicative order of \(a ; (\textrm{mod} ; m) \)라고 칭하고, \( x = ord_m a \)라고 나타낸다.

Remark: 위 조건을 만족하는 x는 항상 존재한다.

증명

because(a,m)=1\\because (a, m) = 1 Rightarrowaphi(m)equiv1  (textrmmod  m)\\Rightarrow a^{\\phi(m)} \\equiv 1 \; (\\textrm{mod} \; m) Rightarroword_malephi(m)\\Rightarrow ord\_m a \\le \\phi(m)

예시: \( m = 5 \)

ord_52=4=phi(5)ord\_5 2 = 4 = \\phi(5) ord_54=2ltphi(5)ord\_5 4 = 2 \\lt \\phi(5)

Theorem 9.1: \(a^x \equiv 1 ; (\textrm{mod} ; m) \Leftrightarrow ord_m a \mid x \)

(a,m)=1,mge1(a, m) = 1, m \\ge 1

\(\Leftarrow\) 증명

x=(ordma)k,    kinmathbbZx = (ord_m a) k, \;\; k \\in \\mathbb{Z} axequiva(ordma)kequiv(a(ordma))kequiv1kequiv1  (textrmmod  m)a^x \\equiv a^{(ord_m a) k} \\equiv (a^{(ord_m a)})^k \\equiv 1^k \\equiv 1 \; (\\textrm{mod} \; m)

\(\Rightarrow\) 증명

x=(ordma)k+r    (0lerltordma)x = (ord_m a) k + r \;\; (0 \\le r \\lt ord_m a) 1equivaxequiva(ordma)k+requiva(ordma)karequiv1karequivar1 \\equiv a^x \\equiv a^{(ord_m a) k + r} \\equiv a^{(ord_m a) k} a^r \\equiv 1^k a^r \\equiv a^r Rightarrowr=0    (because(ordma)textrmisleastpositiveintegersatisfyingakequiv1)\\Rightarrow r = 0 \;\; (\\because (ord_m a) \\textrm{ is least positive integer satisfying } a^k \\equiv 1)

Colorary 9.1.1: \( ord_m a \mid \phi(m) \)

(a,m)=1,    mge1(a, m) = 1, \;\; m \\ge 1

증명

aphi(m)equiv1  (textrmmod  m)a^{\\phi(m)} \\equiv 1 \; (\\textrm{mod} \; m) Rightarrowordmamidphi(m)\\Rightarrow ord_m a \\mid \\phi(m)

Theorem 9.2: \(a^i \equiv a^j ; (\textrm{mod} ; m) \Leftrightarrow i \equiv j ; (\textrm{mod} ; ord_m a) \)

(a,m)=1,  mge1(a, m) = 1, \; m \\ge 1

\(i, j\)는 임의의 정수이다.

증명

aiequivaj  (textrmmod  m)a^i \\equiv a^j \; (\\textrm{mod} \; m) Leftrightarrowmmidaiaj\\Leftrightarrow m \\mid a^i - a^j Leftrightarrowmmidai(aji1)\\Leftrightarrow m \\mid a^i (a^{j-i} -1) Leftrightarrowmmid(aji1)    (because(a,m)=1)\\Leftrightarrow m \\mid (a^{j-i} -1) \;\; (\\because (a, m) = 1) Leftrightarrow(aji1)equiv1  (textrmmod  m)\\Leftrightarrow (a^{j-i} -1) \\equiv 1 \; (\\textrm{mod} \; m) Leftrightarrowordmamidij\\Leftrightarrow ord_m a \\mid i - j Leftrightarrowiequivj  (textrmmod  ordma)\\Leftrightarrow i \\equiv j \; (\\textrm{mod} \; ord_m a)

Definition: Primitive root

(a,m)=1,mge1(a, m) = 1, m \\ge 1 phi(m)=ordma\\phi(m) = ord_m a

일 때, \(a\)를 primitive root modulo \(m\) 이라고 한다.

예시: m = 5

phi(5)=4\\phi(5) = 4 ord52=4ord_5 2 = 4

이므로 \(2\)는 primitive root modulo \(5\)이다.

ord54=2neqphi(5)ord_5 4 = 2 \\neq \\phi(5)

이므로 \(4\)는 primitive root modulo \(5\)가 아니다.

예시: m = 10

phi(10)=phi(2)phi(5)=4\\phi(10) = \\phi(2)\\phi(5) = 4 ord103=4ord_{10} 3 = 4

이므로 \(3\)은 primitive root modulo \(10\)이다.

Remark: Primitive root modulo \(n\)은 존재하지 않을 수도 있다

n=8n = 8 phi(8)=2322=4\\phi(8) = 2^3 - 2^2 = 4 a=1  (textrmmod  8),a=1a2=1  (textrmmod  8),a=3,5,7a = 1 \; (\\textrm{mod} \; 8), a = 1 \\\\ a^2 = 1 \; (\\textrm{mod} \; 8), a = 3, 5, 7 thereforetextrmnoprimitiverootmodulo8\\therefore \\textrm{no primitive root modulo } 8

Theorem 9.3: \(a: \textrm{a primitive root modulo } n \Leftrightarrow \{a, a^2, \cdots, a^{\phi(n)} \} \) is RRS

(a,n)=1,nge1(a, n) = 1, n \\ge 1

\(\Leftarrow\) 증명

aphi(n)equiv1  (textrmmod  n)a^{\\phi(n)} \\equiv 1 \; (\\textrm{mod} \; n) ajnotequiv1  (textrmmod  n)    (1lejltphi(n))a^j \\not\\equiv 1 \; (\\textrm{mod} \; n) \;\; (1 \\le j \\lt \\phi(n))

RRS이므로, 값이 전부 다르다

ordna=phi(n))ord_n a = \\phi(n))

\(\Rightarrow\) 증명

1. 모두 서로 다르다

aiequivaj  (textrmmod  n)a^i \\equiv a^j \; (\\textrm{mod} \; n) Leftrightarrowiequivj  (textrmmod  ordna)    (becausetextrmThm9.2)\\Leftrightarrow i \\equiv j \; (\\textrm{mod} \; ord_n a) \;\; (\\because \\textrm{Thm 9.2}) ordna=phi(n)    (becausetextrmaisaprimitiverootmodulo  n)ord_n a = \\phi(n) \;\; (\\because \\textrm{a is a primitive root modulo} \; n) Leftrightarrowiequivj  (textrmmod  phi(n))\\Leftrightarrow i \\equiv j \; (\\textrm{mod} \; \\phi(n)) Leftrightarrowphi(n)midij\\Leftrightarrow \\phi(n) \\mid i - j 1lei,jlephi(n)Rightarrowi=j1 \\le i, j \\le \\phi(n) \\Rightarrow i = j

2. \( (a^j, n) =1 \)

(aj,n)=1=(a,n)(a^j, n) = 1 = (a, n)

Remark: generator of RRS

\(a\)가 primitive root modulo \(n\)일 때, \(a\)를 RRS의 generator라고 부른다.

Theorem 9.4: \( ord_m (a^u) = \frac {ord_m a} {(ord_m a, u)} \)

(a,m)=1,mge1(a, m) = 1, m \\ge 1

증명

t=ordmat = ord_m a d=(t,u)d = (t, u) t=dt1,u=du1t = dt_1, u = du_1 (t1,u1)=1(t_1, u_1) = 1 s=ordm(au)s = ord_m (a^u)

\(s \mid t_1\)

(au)t1equivadu1t1equiv(at)u1equiv1u1equiv1(a^u)^{t_1} \\equiv a^{d u_1 t_1} \\equiv (a^t)^{u_1} \\equiv 1^{u_1} \\equiv 1 Rightarrowordm(au)midt1\\Rightarrow ord_m (a^u) \\mid t_1 Rightarrowsmidt1\\Rightarrow s \\mid t_1

\(t_1 \mid s\)

1equiv(au)sequivaus  (textrmmod  m)1 \\equiv (a^u)^s \\equiv a^us \; (\\textrm{mod} \; m) Rightarrowordmamidus\\Rightarrow ord_m a \\mid us Rightarrowtmidus\\Rightarrow t \\mid us Rightarrowdt1middu1s\\Rightarrow dt_1 \\mid d u_1 s Rightarrowt1midu1s\\Rightarrow t_1 \\mid u_1 s Rightarrowt1mids    (because(t1,u1)=1)\\Rightarrow t_1 \\mid s \;\; (\\because (t_1, u_1) = 1)

Collorary 9.4.1: \(a^u: \textrm{a primitive root modulo } m \Leftrightarrow (u, \phi(m)) = 1 \)

증명

phi(m)=ordmau    (becauseautextrmisaprimitiveroot)\\phi(m) = ord_m {a^u} \;\; (\\because a^u \\textrm{ is a primitive root}) ordmau=fracordma(ordma,u)ord_m {a^u} = \\frac {ord_m {a}} {(ord_m {a}, u)}

Theorem 9.5: \(n\)이 Primitive root를 가질 경우, 그 개수는 \(\phi(\phi(n))\)이다

증명

r:textrmprimitiveroot  (textrmmod  m)r: \\textrm{primitive root} \; (\\textrm{mod} \; m) r,r2,cdots,rphi(m)textrm:RRS  (textrmmodm)\\{ r, r^2, \\cdots, r^{\\phi(m)} \\} \\textrm{: RRS} \; (\\textrm{mod} m) forallrjtextrm(intheRRS)hasorderofrj  (textrmmod  m)\\forall r^{j} \\textrm{( in the RRS) has order of } r^j \; (\\textrm{mod} \; m) ordmrj=fracordmr(j,ordmr)=fracphi(m)(j,phi(m))    becausetextrmThm9.4ord_m r^j = \\frac {ord_m r} {(j, ord_m r)} = \\frac {\\phi(m)} {(j, \\phi(m))} \;\; \\because \\textrm{Thm 9.4}

\(r^j\)이 Primitive root modulo \(m \Leftrightarrow (j, \phi(m)) = 1\)

1,2,cdots,phi(m):textrmCRS(textrmmodm)\\{1, 2, \\cdots, \\phi(m)\\}: \\textrm{CRS} (\\textrm{ mod } m) phi(phi(m))=textrmthenumberofprimitiveroots\\phi(\\phi(m)) = \\textrm{the number of primitive roots}

Remark: \(p: \textrm{prime}\)

Primitive root \(\textrm{mod} ; p\)가 존재할 때, Primitive root의 개수는 \(\phi(\phi(m)) = \phi(p - 1)\)이다.

에시: \(p = 11\)

phi(phi(11))=phi(10)=4\\phi(\\phi(11)) = \\phi(10) = 4 g:textrmprimitiverootg: \\textrm{primitive root} g1,g3,g7,g9:textrmallprimitiverootsbecause(1,10)=(3,10)=(7,10)=(9,10)=1\\{g^1, g^3, g^7, g^9\\}: \\textrm{all primitive roots} \\\\ \\because (1, 10) = (3, 10) = (7, 10) = (9, 10) = 1

2는 primitive root modulo 11이다.

25equiv1  (textrmmod  11)Rightarroword112=102^5 \\equiv -1 \; (\\textrm{mod} \; 11) \\Rightarrow ord_{11} 2 = 10 becauseord112mid10=phi(11)\\because ord_{11} 2 \\mid 10 = \\phi(11) 21,23,27,29equiv2,8,7,6:textrmallprimitiveroots{2^1, 2^3, 2^7, 2^9} \\equiv \\{2, 8, 7, 6\\}:\\textrm{all primitive roots}