Back to Diary

정수론 Chapter 6.3 - Euler's Theorem

이 글의 내용은 성균관대학교 권순학 교수님의 2019년 4월 18일 수업 내용을 재구성한 것입니다.

Reduced residue system (RRS) {#rrs}

n:textrm자연수n: \\textrm{자연수} Sn=0lealenmidgcd(a,n)=1S_n = \\{0 \\le a \\le n\\ \\mid \\gcd(a, n) = 1 \\}

집합 \(T\)가 \(T \equiv S_n ; (\textrm{mod} ; n)\)을 만족할 때, \(T\)를 Reduced residue system modulo n이리고 부른다

예시 {#rrs-example}

n=4RightarrowT=1,3,1,1,5,8n = 4 \\\\ \\Rightarrow T = \\{1, 3\\}, \\{-1, 1\\}, \\{5, 8\\} n=5RightarrowT=1,2,3,4,2,1,1,2n = 5 \\\\ \\Rightarrow T = \\{1, 2, 3, 4\\}, \\{-2, -1, 1, 2\\}

Remark: \(\gcd(a, n) = 1\)이면 \(aT\)도 RRS이다

증명

1. 모두 다르다 \((\textrm{mod} ; n)\)
ariequivarj(textrmmod  n)Leftrightarrownmid(ariarj)Leftrightarrownmida(rirj)Leftrightarrownmid(rirj)      (becausegcd(a,n)=1)Leftrightarrowriequivrj    (textrmmod  n)Leftrightarrowi=j      (becauserj,riinSn)ar_i \\equiv ar_j (\\textrm{mod} \; n) \\\\ \\Leftrightarrow n \\mid (ar_i - ar_j) \\\\ \\Leftrightarrow n \\mid a(r_i - r_j) \\\\ \\Leftrightarrow n \\mid (r_i - r_j) \;\;\; (\\because \\gcd(a, n) = 1) \\\\ \\Leftrightarrow r_i \\equiv r_j \;\; (\\textrm{mod} \; n) \\\\ \\Leftrightarrow i = j \;\;\; (\\because r_j, r_i \\in S_n)
2. \(\gcd(ar_i, n) = 1\)
gcd(a,n)=1\\gcd(a, n) = 1 gcd(ri,n)=1      (becauseriinSn)\\gcd(r_i, n) = 1 \;\;\; (\\because r_i \\in S_n)

예시: \(n = 8\)

T=1,3,5,7T = \\{1, 3, 5, 7\\}
a = 2
aT=2,4,6,8equiv0,2,4,6  (textrmmod  8)aT = \\{2, 4, 6, 8\\} \\equiv \\{0, 2, 4, 6\\} \; (\\textrm{mod} \; 8) thereforeaT  textrmisnotaRRSmodulo  8\\therefore aT \; \\textrm{is not a RRS modulo} \; 8
a = 3
aT=3,9,15,21equiv1,3,5,7  (textrmmod  8)aT = \\{3, 9, 15, 21\\} \\equiv \\{1, 3, 5, 7\\} \; (\\textrm{mod} \; 8) thereforeaT  textrmisaRRSmodulo  8\\therefore aT \; \\textrm{is a RRS modulo} \; 8

The Euler \(\phi\) function {#euler-phi-function}

phi(n)=Sn    textrmwhere  Sn  textrmisaRRSmodulon\\phi(n) = |S_n| \;\; \\textrm{where} \; S_n \;\\textrm{is a RRS modulo n}

예시 {#euler-phi-function-examples}

phi(1)=0=1\\phi(1) = |\\{0\\}| = 1 phi(2)=1=1\\phi(2) = |\\{1\\}| = 1 phi(3)=1,2=2\\phi(3) = |\\{1, 2\\}| = 2 phi(7)=1,2,3,4,5,6=6\\phi(7) = |\\{1, 2, 3, 4, 5, 6\\}| = 6 phi(8)=1,3,5,7=4\\phi(8) = |\\{1, 3, 5, 7\\}| = 4

The Euler’s Theorem

\(\gcd(a, n) = 1\)인 자연수 \(a\)에 대하여,

aphi(n)equiv1  (textrmmod  n)textrmwherephi(n)textrmisnumberofelementsinRRSa^{\\phi(n)} \\equiv 1 \; (\\textrm{mod} \; n) \\\\ \\textrm{where }\\phi(n) \\textrm{ is number of elements in RRS}

증명 {#proof-of-eulers-theorem}

T:textrmaRRS  (textrmmod  n)T: \\textrm{a RRS} \; (\\textrm{mod} \; n) TequivaT  (textrmmod  n)T \\equiv aT \; (\\textrm{mod} \; n) Rightarrowr1r2cdotsrkequivakr1r2cdotsrk      where  k=ϕ(n)\\Rightarrow r_1 r_2 \\cdots r_k \\equiv a^{k} r_1 r_2 \\cdots r_k \;\;\; where \; k = \phi(n) Rightarrownmid(ak1)r1r2cdotsrk\\Rightarrow n \\mid (a^k - 1) r_1 r_2 \\cdots r_k Rightarrownmid(aphi(n)1)      (becauseriinT)\\Rightarrow n \\mid (a^{\\phi(n)} - 1) \;\;\;(\\because r_i \\in T) Rightarrowaphi(n)equiv1  (textrmmod  n)\\Rightarrow a^{\\phi(n)} \\equiv 1 \; (\\textrm{mod} \; n)

Collorary: The Fermat’s Little Theorem

\(n\)이 소수인 경우, \(a^{\phi(n)} \equiv a^{p-1} \equiv 1 ; (\textrm{mod} ; n) \)