정수론 Chapter 9.2 - Primitive Roots for Primes

이 글의 내용은 성균관대학교 권순학 교수님의 2019년 5월 7일 수업 내용을 재구성한 것입니다.

Theorem 9.6: Lagrange's Theorem

$$ p: \\textrm{prime} \\\\ f(x) = \\sum_{i=0}^n {a_i x^i} \;\; (a_i \\in \\mathbb{Z}) \\\\ a_n \\not\\equiv 0 \; (\\textrm{mod} \; p) \;\; ( \\Leftrightarrow \\deg(f) = n) $$

일 때,

$$ f(x) \\equiv 0 \; (\\textrm{mod} \; p) $$

의 incongruent한 해는 최대 n개이다.

증명

수업 시간에 생략하셨으므로 나중에 추가하겠다.

Remark: \(p\)가 소수가 아니면 9.6은 성립하지 않는다.

반례: \(f(x) = 2x + 4 \; (\\textrm{mod} \; 6)\)

$$ x \\equiv 1, 4 \; (\\textrm{mod} \; 6) $$

반례: \(f(x) = x^2 - 1 \; (\\textrm{mod} \; 15)\)

$$ x \\equiv 1, 4, 11, 14\; (\\textrm{mod} \; 15) $$

Theorem 9.7: \(p\): prime, \(d \\mid p - 1 \\Rightarrow x^d \\equiv 1 \; (\\textrm{mod} \; p)\)의 해의 개수는 \(d\)

$$ d \\ge 1 $$

증명

$$ p - 1 = de $$

$$ x^{p - 1} $$

$$ = x ^ {de} - 1 $$

$$ = (x^d - 1)(x^{d(e-1)} + x^{d(e-2)} + \\cdots + x^d + 1) $$

$$ = (x^d - 1)g(x) $$

$$ S = \\{x \\mid x^{p-1} \\equiv 1 \; (\\textrm{mod} \; p)\\} $$

$$ S_1 = \\{x \\mid x^{d} \\equiv 1 \; (\\textrm{mod} \; p)\\} $$

$$ S_2 = \\{x \\mid g(x) = 0\\} $$

$$ S = S_1 \\cup S_2 \\\\ \\mid S \\mid \\le \\mid S_1 \\mid + \\mid S_2 \\mid $$

$$ |S_1| \\le d \\\\ |S_2| \\le d(e - 1) $$

$$ |S| = p - 1 = |S_1| + |S_2| = d + d(e-1) = de $$

$$ \\therefore |S_1| = d $$

Lemma 9.1: \((ord_p a, ord_p b) = 1 \\Rightarrow ord_p {ab} = ord_p a ord_p b\)

증명

$$ s = ord_p a, \; t = ord_p b, \; u = ord_p {ab} $$

\(u \\mid st\)

$$ (ab)^{st} = (a^s)^t (b^t)^s \\equiv 1 \; (\\textrm{mod} \; 1) $$

$$ \\Rightarrow ord_p {ab} \\mid st \;\;\;(\\because \\textrm{Thm 9.1}) $$

\(st \\mid u\)

$$ 1 \\equiv (ab)^u \\equiv a^u b^u \; (\\textrm{mod} \; p) $$

$$ a^u \\equiv b^{-u} \; (\\textrm{mod} \; p) \\\\ (\\because a, b \\in \\textrm{RRS}, \\textrm{inverse exists}) $$

$$ ord_p (a^u) = ord_p (b^{-u}) $$

$$ \\Rightarrow \\frac {ord_p a} {(ord_p a, u)} = \\frac {ord_p b} {(ord_p b, -u)} = 1 $$

$$ \\Rightarrow \\\\ (ord_p a, u) = ord_p a \\Rightarrow ord_p a \\mid u \\\\ (ord_p b, u) = ord_p b \\Rightarrow ord_p b \\mid u $$

Collorary 9.8.1: Every prime has a primitive root \((\\text{ mod } p)\)

증명

$$ \\exists \; g \;\; \\text{s.t. } \\text{ord}_p g = p - 1 $$

임을 보이면 충분하다.

$$ \\phi(p) = p - 1 = \\prod_{i=1}^{n} q_i^{\\mu_i} $$

$$ \\forall i \; \\exists a \;\; \\text{s.t. } \\text{ord}\_p a_i = q_i^{u_i} $$

Claim: \(q^{\\mu}\)개의 해중 최소 1개는 \(q^{\\mut}\)승을 취해줘야만 \(\\equiv 1\)이 된다

$$ \\Leftrightarrow \\exists \; a \\text{ s.t. } \\begin{cases} a^{q^u} \\equiv = 1 (\\text{mod } p) \\\\ \\text{ord}_pa = q^u \\end{cases} $$

증명

명제가 거짓이라고 가정하자. 그러면

$$ \\text{ord}_p a \\lt q^{\\mu} \\\\ \\text{ord}_p a \\mid q^{\\mu} \; (\\because \\text{Thm 9.1}) \\\\ \\Rightarrow \\text{ord}_p a = q^s, s \\le \\mu - 1 $$

$$ a^{q^{\\mu - 1}} \\equiv 1 (\\text{ mod } p) \;\; (\\because \\text{ord}_p a \\not= q^u) \\\\ \\Rightarrow x^{q^{\\mu}} \\text{and } \\Rightarrow x^{q^{\\mu - 1}} \\text{ has same solution} $$

해의 개수가 같을 수 없으므로 모순이다.

증명 마무리

$$ \\Rightarrow \\text{ord}\_p {a_1 a_2 \\cdots a_n} \\\\\ = \\text{ord} a_1 \\text{ord} a_2 \\cdots \\text{ord} a_n \\\\ = \\prod_i q_i^{\\mu_i} $$

$$ $$

Remark: Primitive root exists for \(p^m\)

$$ p: \\text{odd prime} \\\\ m: \\text{integer}, m \\ge 1 $$

Remark: \(n\) has primitive root \(\\Leftrightarrow n = 2, 4, p^m, 2p^m\)

$$ p: \\text{odd prime} \\\\ m: \\text{integer}, m \\ge 1 $$